3.21.53 \(\int \frac {1}{(a+\frac {b}{x^3})^{3/2} x^3} \, dx\) [2053]

3.21.53.1 Optimal result
3.21.53.2 Mathematica [C] (verified)
3.21.53.3 Rubi [A] (verified)
3.21.53.4 Maple [B] (verified)
3.21.53.5 Fricas [C] (verification not implemented)
3.21.53.6 Sympy [A] (verification not implemented)
3.21.53.7 Maxima [F]
3.21.53.8 Giac [F]
3.21.53.9 Mupad [F(-1)]

3.21.53.1 Optimal result

Integrand size = 15, antiderivative size = 520 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=\frac {2 \sqrt {a+\frac {b}{x^3}}}{3 a b^{2/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {2}{3 a \sqrt {a+\frac {b}{x^3}} x^2}-\frac {\sqrt {2-\sqrt {3}} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} a^{2/3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}+\frac {2 \sqrt {2} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}+\frac {b^{2/3}}{x^2}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} a^{2/3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}} \]

output
-2/3/a/x^2/(a+b/x^3)^(1/2)+2/3*(a+b/x^3)^(1/2)/a/b^(2/3)/(b^(1/3)/x+a^(1/3 
)*(1+3^(1/2)))+2/9*(a^(1/3)+b^(1/3)/x)*EllipticF((b^(1/3)/x+a^(1/3)*(1-3^( 
1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*2^(1/2)*((a^(2/3)+b^ 
(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3 
/4)/a^(2/3)/b^(2/3)/(a+b/x^3)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/ 
x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)-1/3*(a^(1/3)+b^(1/3)/x)*EllipticE((b^(1/3) 
/x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)/x+a^(1/3)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/ 
2*6^(1/2)-1/2*2^(1/2))*((a^(2/3)+b^(2/3)/x^2-a^(1/3)*b^(1/3)/x)/(b^(1/3)/x 
+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/4)/a^(2/3)/b^(2/3)/(a+b/x^3)^(1/2)/(a^ 
(1/3)*(a^(1/3)+b^(1/3)/x)/(b^(1/3)/x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)
 
3.21.53.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.02 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.10 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=\frac {2 x \sqrt {1+\frac {a x^3}{b}} \operatorname {Hypergeometric2F1}\left (\frac {5}{6},\frac {3}{2},\frac {11}{6},-\frac {a x^3}{b}\right )}{5 b \sqrt {a+\frac {b}{x^3}}} \]

input
Integrate[1/((a + b/x^3)^(3/2)*x^3),x]
 
output
(2*x*Sqrt[1 + (a*x^3)/b]*Hypergeometric2F1[5/6, 3/2, 11/6, -((a*x^3)/b)])/ 
(5*b*Sqrt[a + b/x^3])
 
3.21.53.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 543, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {858, 819, 832, 759, 2416}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^3 \left (a+\frac {b}{x^3}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 858

\(\displaystyle -\int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x}d\frac {1}{x}\)

\(\Big \downarrow \) 819

\(\displaystyle \frac {\int \frac {1}{\sqrt {a+\frac {b}{x^3}} x}d\frac {1}{x}}{3 a}-\frac {2}{3 a x^2 \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 832

\(\displaystyle \frac {\frac {\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}-\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a} \int \frac {1}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}}{3 a}-\frac {2}{3 a x^2 \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\frac {\int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\sqrt {a+\frac {b}{x^3}}}d\frac {1}{x}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}}{3 a}-\frac {2}{3 a x^2 \sqrt {a+\frac {b}{x^3}}}\)

\(\Big \downarrow \) 2416

\(\displaystyle \frac {\frac {\frac {2 \sqrt {a+\frac {b}{x^3}}}{\sqrt [3]{b} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} E\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right )|-7-4 \sqrt {3}\right )}{\sqrt [3]{b} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}}{\sqrt [3]{b}}-\frac {2 \left (1-\sqrt {3}\right ) \sqrt {2+\sqrt {3}} \sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right ) \sqrt {\frac {a^{2/3}-\frac {\sqrt [3]{a} \sqrt [3]{b}}{x}+\frac {b^{2/3}}{x^2}}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} b^{2/3} \sqrt {a+\frac {b}{x^3}} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\frac {\sqrt [3]{b}}{x}\right )^2}}}}{3 a}-\frac {2}{3 a x^2 \sqrt {a+\frac {b}{x^3}}}\)

input
Int[1/((a + b/x^3)^(3/2)*x^3),x]
 
output
-2/(3*a*Sqrt[a + b/x^3]*x^2) + (((2*Sqrt[a + b/x^3])/(b^(1/3)*((1 + Sqrt[3 
])*a^(1/3) + b^(1/3)/x)) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*a^(1/3)*(a^(1/3) + b 
^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + Sqrt[3] 
)*a^(1/3) + b^(1/3)/x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3 
)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(b^(1/3)*Sqrt[ 
a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3])*a^(1/3) + b 
^(1/3)/x)^2]))/b^(1/3) - (2*(1 - Sqrt[3])*Sqrt[2 + Sqrt[3]]*a^(1/3)*(a^(1/ 
3) + b^(1/3)/x)*Sqrt[(a^(2/3) + b^(2/3)/x^2 - (a^(1/3)*b^(1/3))/x)/((1 + S 
qrt[3])*a^(1/3) + b^(1/3)/x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + 
b^(1/3)/x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)/x)], -7 - 4*Sqrt[3]])/(3^(1/4) 
*b^(2/3)*Sqrt[a + b/x^3]*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)/x))/((1 + Sqrt[3 
])*a^(1/3) + b^(1/3)/x)^2]))/(3*a)
 

3.21.53.3.1 Defintions of rubi rules used

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 819
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-( 
c*x)^(m + 1))*((a + b*x^n)^(p + 1)/(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 
1) + 1)/(a*n*(p + 1))   Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a 
, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p 
, x]
 

rule 832
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 - Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && PosQ[a]
 

rule 858
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + 
b/x^n)^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, p}, x] && ILtQ[n, 0] && Int 
egerQ[m]
 

rule 2416
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 - Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 - Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x] - S 
imp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 + Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt 
[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3]) 
*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && Eq 
Q[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.21.53.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2702 vs. \(2 (388 ) = 776\).

Time = 0.44 (sec) , antiderivative size = 2703, normalized size of antiderivative = 5.20

method result size
default \(\text {Expression too large to display}\) \(2703\)

input
int(1/(a+b/x^3)^(3/2)/x^3,x,method=_RETURNVERBOSE)
 
output
2/3/((a*x^3+b)/x^3)^(3/2)/x^5*(a*x^3+b)/a^2*(I*3^(1/2)*(1/a^2*x*(-a*x+(-a^ 
2*b)^(1/3))*(I*3^(1/2)*(-a^2*b)^(1/3)+2*a*x+(-a^2*b)^(1/3))*(I*3^(1/2)*(-a 
^2*b)^(1/3)-2*a*x-(-a^2*b)^(1/3)))^(1/2)*a^2*x^3+4*I*(x*(a*x^3+b))^(1/2)*( 
-(I*3^(1/2)-3)*x*a/(I*3^(1/2)-1)/(-a*x+(-a^2*b)^(1/3)))^(1/2)*((I*3^(1/2)* 
(-a^2*b)^(1/3)+2*a*x+(-a^2*b)^(1/3))/(1+I*3^(1/2))/(-a*x+(-a^2*b)^(1/3)))^ 
(1/2)*((I*3^(1/2)*(-a^2*b)^(1/3)-2*a*x-(-a^2*b)^(1/3))/(I*3^(1/2)-1)/(-a*x 
+(-a^2*b)^(1/3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*a/(I*3^(1/2)-1)/(-a*x+ 
(-a^2*b)^(1/3)))^(1/2),((I*3^(1/2)+3)*(I*3^(1/2)-1)/(1+I*3^(1/2))/(I*3^(1/ 
2)-3))^(1/2))*(-a^2*b)^(2/3)*3^(1/2)*x-4*(x*(a*x^3+b))^(1/2)*(-a^2*b)^(1/3 
)*(-(I*3^(1/2)-3)*x*a/(I*3^(1/2)-1)/(-a*x+(-a^2*b)^(1/3)))^(1/2)*((I*3^(1/ 
2)*(-a^2*b)^(1/3)+2*a*x+(-a^2*b)^(1/3))/(1+I*3^(1/2))/(-a*x+(-a^2*b)^(1/3) 
))^(1/2)*((I*3^(1/2)*(-a^2*b)^(1/3)-2*a*x-(-a^2*b)^(1/3))/(I*3^(1/2)-1)/(- 
a*x+(-a^2*b)^(1/3)))^(1/2)*EllipticF((-(I*3^(1/2)-3)*x*a/(I*3^(1/2)-1)/(-a 
*x+(-a^2*b)^(1/3)))^(1/2),((I*3^(1/2)+3)*(I*3^(1/2)-1)/(1+I*3^(1/2))/(I*3^ 
(1/2)-3))^(1/2))*a*x^2+6*(x*(a*x^3+b))^(1/2)*(-a^2*b)^(1/3)*(-(I*3^(1/2)-3 
)*x*a/(I*3^(1/2)-1)/(-a*x+(-a^2*b)^(1/3)))^(1/2)*((I*3^(1/2)*(-a^2*b)^(1/3 
)+2*a*x+(-a^2*b)^(1/3))/(1+I*3^(1/2))/(-a*x+(-a^2*b)^(1/3)))^(1/2)*((I*3^( 
1/2)*(-a^2*b)^(1/3)-2*a*x-(-a^2*b)^(1/3))/(I*3^(1/2)-1)/(-a*x+(-a^2*b)^(1/ 
3)))^(1/2)*EllipticE((-(I*3^(1/2)-3)*x*a/(I*3^(1/2)-1)/(-a*x+(-a^2*b)^(1/3 
)))^(1/2),((I*3^(1/2)+3)*(I*3^(1/2)-1)/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/...
 
3.21.53.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.12 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=-\frac {2 \, {\left (b x \sqrt {\frac {a x^{3} + b}{x^{3}}} + {\left (a x^{3} + b\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, \frac {1}{x}\right )\right )\right )}}{3 \, {\left (a^{2} b x^{3} + a b^{2}\right )}} \]

input
integrate(1/(a+b/x^3)^(3/2)/x^3,x, algorithm="fricas")
 
output
-2/3*(b*x*sqrt((a*x^3 + b)/x^3) + (a*x^3 + b)*sqrt(b)*weierstrassZeta(0, - 
4*a/b, weierstrassPInverse(0, -4*a/b, 1/x)))/(a^2*b*x^3 + a*b^2)
 
3.21.53.6 Sympy [A] (verification not implemented)

Time = 0.65 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.08 \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=- \frac {\Gamma \left (\frac {2}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {2}{3}, \frac {3}{2} \\ \frac {5}{3} \end {matrix}\middle | {\frac {b e^{i \pi }}{a x^{3}}} \right )}}{3 a^{\frac {3}{2}} x^{2} \Gamma \left (\frac {5}{3}\right )} \]

input
integrate(1/(a+b/x**3)**(3/2)/x**3,x)
 
output
-gamma(2/3)*hyper((2/3, 3/2), (5/3,), b*exp_polar(I*pi)/(a*x**3))/(3*a**(3 
/2)*x**2*gamma(5/3))
 
3.21.53.7 Maxima [F]

\[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{3}} \,d x } \]

input
integrate(1/(a+b/x^3)^(3/2)/x^3,x, algorithm="maxima")
 
output
integrate(1/((a + b/x^3)^(3/2)*x^3), x)
 
3.21.53.8 Giac [F]

\[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=\int { \frac {1}{{\left (a + \frac {b}{x^{3}}\right )}^{\frac {3}{2}} x^{3}} \,d x } \]

input
integrate(1/(a+b/x^3)^(3/2)/x^3,x, algorithm="giac")
 
output
integrate(1/((a + b/x^3)^(3/2)*x^3), x)
 
3.21.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (a+\frac {b}{x^3}\right )^{3/2} x^3} \, dx=\int \frac {1}{x^3\,{\left (a+\frac {b}{x^3}\right )}^{3/2}} \,d x \]

input
int(1/(x^3*(a + b/x^3)^(3/2)),x)
 
output
int(1/(x^3*(a + b/x^3)^(3/2)), x)